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The lift on an aerofoil in starting flow 

By J. M. R. GRAHAM 
Department of Aeronautics, Imperial College, London SW7 2BY 

(Received 26 January 1983) 

An analysis is given of the initial development of the lift on an aerofoil in inviscid 
starting flow. It is shown that because of the spiral shape of the vortex sheet shed 
initially from the trailing edge the lift and drag are both singular at the start of 
impulsive motion. This result is in contrast with the prediction of finite forces by 
methods that assume the vortex sheet to be initially planar. The effect of a steady 
rate of change of incidence following the sudden onset of transverse (heaving) motion 
of an  aerofoil in a steady stream is also discussed. 

1. Introduction 
Chow & Huang (1982) have derived results in a recent paper for the initial 

development of lift and drag on an impulsively started aerofoil in inviscid incom- 
pressible flow. I n  particular they studied the effect of the trailing-edge angle 7 ,  

showing that the lift 
L(t) t ( z - K ) / ( K - l )  

where K = 2 - 7 / x  and the time t is measured from the start of the impulsive motion. 
This result predicts a zero value of lift for all aerofoils at t = 0, the value being non-zero 
only if the trailing edge is a cusp (7 = 0). The analysis leading to this result satisfies 
the exact normal-velocity boundary condition of inviscid flow on the surface of the 
aerofoil profile, but assumes that, for small enough times, the vortex sheet shed at 
the trailing edge can be approximated by a short planar element, coplanar with the 
higher velocity surface a t  the trailing edge of the aerofoil (figure 1) .  However, this 
assumption, although frequently used and found to give an adequate representation 
of the latest piece of an extensive sheet shed from the trailing edge, is not generally 
a satisfactory representation of the whole sheet, however small. 

The development of a vortex sheet shed from a sharp edge under a variety of 
inviscid starting flows has been calculated by Pullin (1978). I n  all the cases that he 
considered, including the impulsive start, the vortex sheet was found to roll up as 
a self-similar spiral above the lee-side of the edge. The sheet cannot therefore be 
represented accurately by a plane element at any time after an impulsive start, 
however short. I n  fact a spiral sheet is better approximated by a single concentrated 
point vortex in the neighbourhood of its centroid. It will be shown here that such 
a representation gives a time dependence for the lift in impulsively started flow, 

~ ( t )  cc t ( 3 - 2 ~ ) / ( 2 ~ - 1 )  

which is quite different from that obtained by making the planar sheet assumption. 
The lift given by the above expression has a weak singularity a t  t = 0 for all aerofoils 
with a trailing edge angle 7 < in, i.e. for all practical aerofoils. 

A concentrated-vortex method is used in this paper to calculate some quantitative 
values. This simplified model of a spiral vortex sheet was first proposed by Brown 
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& Michael (1955) for separated flow over slender wings and later extended by Rott 
(1956) to unsteady flows past isolated sharp edges. The more complete representation 
of the sheet used by Pullin could, of course, be used here also. However, comparisons 
with more accurate methods indicate that the concentrated-point-vortex model 
predicts overall quantities such as the circulation or lift to acceptable accuracy 
provided that the trailing-edge angles are not too large (< in). 

If, however, the aerofoil in a uniform stream starts to move so that its relative 
incidence to the stream changes continuously at  a sufficiently gradual rate, then it 
will be shown that the rate of roll-up of the vortex sheet is much weaker. In this case 
the sheet is convected downstream faster than it rolls up and the time dependence 
of the lift is as given by the planar-sheet assumption. It may therefore be assumed 
that the planar sheet is a reasonable approximation for gradual changes of incidence 
in a continuously flowing stream. 

2. Analysis 

example. The transformation 
We consider inviscid flow past a KBrman-Trefftz aerofoil profile of chord c as an 

z - K a  6-a I( 

z+Ka =(=I 
transforms the aerofoil shown in figure 1 with trailing-edge angle T = ~ ( 2  - K) into 
a circle of radius R = a+€ in the [-plane. The displacement E depends on the 
thickness-to-chord ratio of the aerofoil. 

In  the neighbourhood of the trailing edge at z = K a  a local coordinate system is 
s = z - K a  and correspondingly u = <-a. The local form of the transformation in 
terms of these is 

{( s )I/. ( s ] a = 2 a  ~ + - +... . 
2Ka 2 K a  

A non-circulatory flow relative to the aerofoil has chordwise and transverse 
components U(t)  and V ( t ) .  The corresponding complex potential in the f;-plane is 

Near the trailing edge in the z-plane this becomes 

W,(s) = 2RU-2i V(2~) l - l /~  K - ~ / ~ Q ~ / ~  + ( U +  i V )  (2a)2(1-1/K) K - ~ / ~ R - ~ s ~ / ~  + . . . . 
The spatially constant term 2RU has no effect on the velocity field or vortex 

Following Pullin (1978), the equation for the development of the vortex sheet 
shedding and may be ignored. 

s = s(r, t) shed from the trailing edge in response to the flow round it is 

where * indicates a complex conjugate. 
In  addition a Kutta-Joukowski condition must be applied at the trailing edge : 
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The complex potential W = W, + Wr, where Wris the part due to the vortex sheet. 
Replacing the interaction of the vortex sheet with the body by an image sheet in the 
circular profile in the transformed plane, 

(3) 
aw aw, I 1 aa{j; 
as as 2xi as a-a"(r,t) 
-=- 

r is the circulation of the vortex sheet (total circulation ZJ from the origin to the 

Hence the convection equation for the vortex sheet becomes 
point s" (or a") on the sheet. a", is the image of C in the [-plane circle. 

and the Kutta-Joukowski condition 

d T  ( 2 a ~ ) l - l l ~  
V( t ) .  - - 

4 x K  

We now consider the case of a starting flow given to leading order in t by 

u = eta+ ...) v = vty+ ... . 

r = fw+ ..., s" = 8 t v +  ..., 
Hence we may assume 

where v is expected to be positive since the sheet grows continuously with time, and 
8 and f are the similarity variables describing the shape of the vortex sheet and its 
strength to lowest order in the time. 

V 

K 

Substituting in ( 5 ) ,  
p-- = y.  

Using this result in (4) gives five terms from left to right depending on t to the 
following powers : 

Since v 2 0, the fourth term clearly never influences the leading-order time develop- 
ment of the sheet. There are therefore two possibilities: 

2 v  V 
(a )  p+--v < y+--v, 

K K 

so that the U-velocity dominates the development of the vortex sheet; in this case 

V 2 v  
( b )  y+;-v < p + - - v ,  

K 

in which case the V-velocity round the edge is dominant and 
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Both these alternatives lead to v > 0, thus justifying the a priori assumption. It will 
be shown that the first alternative leads to the centroid of the shed vorticity moving 
approximately in the direction of the bisector of the trailing-edge angle. It is therefore 
closer to the representation of the sheet by a short plane element as suggested by 
Chow & Huang. However, this alternative only applies if 

In a starting flow past an aerofoil at  fixed incidence a, 

U = U,(t)cosa, V = U,(t) sinu, P = y .  

Hence (8) is never satisfied since ( 2 ~ - 2 ) / ( 2 ~ -  1)  < 1 for all edge angles. But if the 
vortex shedding and build-up of circulation is more gradual, as for example when an 
aerofoil starts to change its effective incidence at a moderate rate in a uniformly 
flowing stream, 

P = 0, 
and provided that 

in 
Y ’ G ’  

the U-velocity dominates and the first alternative does apply. In this case convection 
of the sheet downstream is more significant than the rate of roll-up, and the plane 
sheet is likely to be a good approximation. 

In order to demonstrate the importance of the initial shape of the vortex sheet on 
the development of lift on the aerofoil, we now calculate some examples using the 
concentrated-point-vortex representation of the sheet. 

2.1. Concentrated-point-vortex representation (figure 1 ) 
In this simplified model of a spiral vortex sheet, the sheet is replaced by a 
concentrated point vortex r, at so at the approximate ‘ centre ’ of the spiral joined 
to the trailing edge (s = 0) by a ‘cut ’ in the plane across which the velocity potential 
is discontinuous. The cut represents the effect of the sheet feeding vorticity from the 
edge to the growing vortex core. The equations governing the growth and motion 
of the vortex have been derived by Rott (1956) and Graham (1977) .for unsteady 
separated flow based on the original theory of Brown & Michael (1955) for steady 
separated flow over a slender wing. 

They are a zero total force (complex) equation 

and the Kutta-Joukowski condition at  the edge 

where aIo = -Ra,*/(R+ a,*) is the image of a. in the circle, for small ao/R. Equations 
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(9)-( 11)  are dimensionally exactly the same as equations (1)-(3) for the continuous 
sheet that they replace. Therefore if, as before, 

then either 
r, = FUl+ ..., so = &”+ ...) 

if U dominates, 

or 

if V dominates, v=-  Y + l  
2- 1 / K  

and 

2.2. Aerofoil starting jiows 

We consider a starting flow U,(t) = 0,tP at incidence a past the aerofoil. Thus 

u = 0, cosatp, v = 0, sinatp, y = P, 
In this case it is clear that the second alternative ( V dominant) applies for all values 
of /3 and all trailing-edge angles. 

Substituting in (9)-( 1 1 )  (see Graham 1977) gives without further approximation 

where 
8, = - K COS-1 (id), 

K ) f  ( K -  I )  ( 2 K -  1 )  
x v  = [(4;K ( ~ P K + K +  1) 

The form of these two equations can also be obtained very simply by considering 
a local lengthscale 9 for the flow near the edge. Therefore from dimensional 
considerations and its dependence on s, the local potential 

where 

from the original form of W,. 
If so K 3 and & cc 9 - l  the time dependence of (12) and (13) follows. 
The expression for 6, shows that the vortex core leaves the trailing edge at  a large 

angle to the stream (assuming a typical magnitude for a). For example in the case 
of a cusped trailing edge (7 = 0, K = 2) the vortex moves in a perpendicular direction 
to that of the cusp and the vortex forms above the trailing edge (figure 2). This initial 
direction of movement of the vortex, which is in agreement with Pullin’s (1978) more 
detailed calculations, is responsible for the large initial rate of vortex shedding 

and hence the comparatively large initial force on the aerofoil. Direct comparison of 
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FIQURE 2. Initial vortex sheet development for 13 % thick Joukowski aerofoil in impulsively 
started flow at 10' incidence. Aerofoil chord = 3.6364R. 

(12) with Pullin's result from an isolated edge in the case of unit impulsive starting 
flow (p = 0, U ,  sinala  = 1 )  round a cusp (7 = 0) gives: 

ro = -2.493ti (equation (12)), 
&, = -2.398ti (Pullin). 

This gives an indication of the magnitude of the error in the circulation predicted 
by the concentrated vortex method. It should, however, be emphasized that detailed 
quantities such as pressure distributions are predicted much less accurately. 

The complex force 2 per unit span of the aerofoil can be most conveniently 
evaluated by momentum considerations from a form of Blasius theorem : 

0 
2 = Wdz, 

where the integral is taken round a circuit at infinity surrounding the whole vortex 
wake including the starting vortex and the aerofoil. This is the unsteady analogue 
of an integral for the force on a slender body in terms of its crossflow potential (Brown 
& Michael 1955) and can be shown to be equivalent to the usual form of Blasius' 
theorem (Graham 1980). 

Substituting for W and evaluating the integral by the residue theorem : 

The first term of this expression is the inertia force arising from acceleration of the 
non-circulatory (attached) flow over the profile and the second term is the contribution 
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from the circulation. The second term is independent of whether the flow is 
accelerating and the aerofoil stationary, as implicitly assumed here, or whether the 
aerofoil is accelerating in otherwise stationary fluid, the more practical case. In  the 
latter case the first term is reduced by the so-called Froude-Krylov forcep(aU,/at) A .  
This force represents the added contribution of the undisturbed pressure gradient in 
the fluid acting as a buoyancy force on the volume A per unit length of the profile. 

2.3. Impulsively started motion (j3 = 0) 
In  this case the inertia force is zero for all t > 0. (It has an infinite value a t  t = 0.) 
Henceforth fort > 0 both moving aerofoil and moving fluid situations are dynamically 
the same. U ,  = constant for t > 0, therefore 

2 - t (3-2K)/ (2K-1)  in equation (14). 

Hence 2 is singular as t + O  for all K > I, i.e. for all aerofoils with trailing-edge angles 
7 c in. This result contrasts with the finite (7 = 0) or zero limits obtained by Chow 
& Huang (1982) for 2 as t+O assuming the vortex sheet to be initially plane. 

Taking the lift force L(t) as the component of 2 perpendicular to the free stream 
and using the result for the steady flow lift on the aerofoil 

E =  4npU2, Rsinu, 

the initial ratio of the lift coefficients is 

for general starting flows, and 

c,(t) - 8x5 cosa a 2 Rsina  2 / ( 2 K - - 1 )  [T  t ( 3 - 2 K ) / ( Z K - l )  

- 2K-1 ( x ) ( y )  (??) (16) 

in terms of U ,  t/R for impulsively started flow. Equation (16) is compared with the 
results of Chow & Huang’s plane-sheet assumption in table 1 for two trailing- 
edge angles and two incidences. Direct comparison is only possible if the aerofoil’s 
thickness/chord ratio is also specified since the dependence on the ratio R l a  is 
different in the two cases. However, for thin aerofoils (R/a)21(2K-1) is close to unity 
so qualitative comparison is possible. The streamwise component of (14) shows 
similarly that the drag force is singular at t = 0. 

The most important effect of the present theory is to show that the lift decreases 
initially in the case of an impulsive start before reaching a minimum and then 
increasing in the usual monotonic way thereafter. Apparently no numerical compu- 
tations have revealed this behaviour previously. There are two probable reasons for 
this: the minimum lift is reached in a very short time by normal computational 
standards, U ,  t l c  = O( l O - l ) ,  and the first time step of a computation necessarily 
represents a finite rather than infinite acceleration to the final velocity. Most 
numerical calculations, such as those of Giesing (1968) and Basu & Hancock (1978) 
represent the vortex sheet by discrete points or elements which are shed in the 
downstream sector formed by the extension of the aerofoil upper and lower surfaces 
at the trailing edge. In  fact, as Basu & Hancock show, such a method can be made 
to take up naturally the correct orientation for tangential separation once the sheet 
has started to develop. 
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0.048 0.220 

a = 1' a = loo 

0.943 4.792 
0.488 2.482 
0.253 1.286 
0.131 0.666 
0.068 0.345 
0.035 0.179 

TABLE 1 

(small i) 
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Chow & Huang (1982) 
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0.423 
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0.0 1 0.1 1 .o j 0.001 I I I 

0.001 0.01 0.1 u, tlc 
I I I 

FIQURE 3. Lift coefficient for impulsively started flow as figure 2: -, Wagner function; ---, 
equation (16); -.-.-, Chow & Huang (1982). 

I n  order to demonstrate the reality of the asymptotic result obtained above for 
small times, a numerical computaticln of the sheet development for an aerofoil in 
impulsive flow has been carried out using the discrete (mu1ti)vortex method. In  order 
not to bias the method towards the t:ype of roll-up anticipated, all the vortices were 
shed sequentially tangentially from the trailing edge. Roll-up of the vortex sheet was 
allowed to occur haphazardly without representation of the inner part of the spiral 
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by a core vortex to  promote stability. For this reason the structure of the inner part 
of the vortex spiral is destroyed by the rapid growth of short-wavelength instabilities 
discussed by Moore (1974). The aerofoil was a Joukowski profile (i.e. one of the 
Karman-Trefftz family with r = 0) with e / R  = 0.1,  giving a thickness/chord ratio 
of 13 Yo. Computations were carried out with the aerofoil at loo incidence to  the flow 
using very small time steps U,At/R of order and above. The initial development 
of the predicted sheet, which is subject to  stronger roll-up than downstream 
convection, takes place above the rear part of the aerofoil's upper surface (figure 2 ) .  
This result is in agreement with the concentrated point vortex result, as is the 
prediction for the lift coefficient shown in figure 3. The magnitude of the initial peak 
in the lift coefficient is clearly dependent on the size of time step At used. This suggests 
that  in the limit At+O the t-4 singular behaviour would be recovered and explains 
why no peak may be predicted in 'normal' computations, which use a time step 
U,At/R of order 10-l or larger. These figures also show how, as time elapses, effects 
of streamwise convection become increasingly significant, the rolled-up vortex is 
swept downstream and the well-established rising C, curve is reached. 

Real starting flows can never be truly impulsive and must have finite acceleration. 
'Impulsively ' started motion consists of a large but finite initial acceleration with 
0, large and /? > 1 .  Inertia therefore dominates the force a t  t = 0 and no singularity 
occurs. However, the results of the multivortex calculations shown in figure 3 
similarly represent flows with large but effectively finite acceleration during the first 
time step. These results show that increasing the initial acceleration increases the 
initial peak in the lift due to circulation at the end of the acceleration phase in 
addition to the larger but more transitory inertia force, which occurs during the 
acceleration phase only. If, however, the initial acceleration takes place over a 
non-dimensional time U,t /c  greater than about the initial peak in the 
circulatory part of the lift will disappear, while the inertia force will remain. 

2.4. Cases when the chordwise velocity dominates the initial development 

If 

then the leading-order solution to (9)-(11) is 

K / 2 ( K  - 1 )  

So = 2K-1/(K-1)  xu(;) ' - a ,  

where 
4(K- 1 )  

x u =  [ K ( 2 Y ( K - 1 ) + ( P + 1 ) ( K + 1 )  

so is predicted to be real by this result, and therefore the model predicts that  the 
centroid of vorticity should move initially along the line bisecting the trailing-edge 
angle. The transverse velocity field and roll-up of the vortex sheet are relatively 
weaker, and streamwise convection dominates the development of the sheet. 

I n  this case the circulatory part of the force on the aerofoil is given by 
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FIGURE 4. Initial vortex-sheet development for aerofoil in heaving motion. 

This formula (17),  if adopted, incorrectly, for the case of impulsively started flow, 

gives 2, N t ( Z - K ) / ( K - l )  

which is the time dependence derived by Chow & Huang for the lift force. The singular 
behaviour of the previous solution (15) a t  t = 0 is absent. However, a type of flow 
in which U dominates and (17) gives the correct dependence on the time for the initial 
development of the force on an aerofoil occurs when an aerofoil in a steady stream 
suddenly starts to change its effective incidence at a constant rate. For example, in 
the case when the aerofoil suddenly starts to move transversely with constant 
acceleration 8, 

U =  U,, i.e. p = O ,  

V =  Gt,  i.e. y = I .  

Therefore, from (17), including the inertia force, 

C c  is here a representative steady lift coefficient 8nR2 Vb/ vZ,c (when the aerofoil is 
at incidence arcsin ( G R / U & ) )  and A is the cross-sectional area of the aerofoil. 
The inertia (first) term of the lift force in (18) dominates the circulatory contribution 
to  the lift a t  small times. 

Figure 4 shows the vortex sheet shed from a Joukowski aerofoil undergoing 
transverse motion in a steady stream, computed by a discrete vortex method with 
very small time steps. Comparison with figure 2 for impulsively started flow shows 
the dominance of streamwise convection over roll-up of the vortex sheet. Indeed, i t  
appears that for sufficiently small values of transverse acceleration the discrete vortex 
method predicts the shedding of an unrolled-up sheet for a large number of time steps. 
The time history of the circulatory part of the lift force obtained by this method shows 
a nearly linear growth with time close to that predicted by (18) (figure 5). The initially 
faster rate of growth is due to  the effect of the finite initial time step. 
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FIQURE 5. Lift coefficient (circulatory part) for aerofoil in heaving motion. 
-, equation (18) circulatory part. 

2.5. Higher-order terms 

If we substitute 
r, = r;vl+G,tue+..* (p2 >PI), 
so = d1t”1+d2t”2+ ... (v2 > VI) 

in (9)-(11) and consider the case when Y dominates, we obtain 

K 

2 K -  1 
v1 = - 

1 

as before, and in addition 

K + 1  

2 K - 1 ’  
v2 = - 

2 
P2 = - 2 K - 1 ’  

Hence the circulatory part of the lift coefficient for an impulsive start 

c, - cL,t(3-2K)/(2K-1) + c t(3-2Kf1/~)/(2K-l) + c LS t(4-2“)/(2K-1) + ... 

c, - CL1t-j+CL2t-f+CLstO+ ... . 

L2 

When the trailing edge is a cusp, for example, 

Thus the difference in order of magnitude of succeeding terms is small, and higher-order 
terms can be expected to have a significant influence unless t is very small indeed. 

2.6. Effects of viscosity and compressibility 

In  a real viscous fluid, shedding of a vortex sheet at the trailing edge results from 
separation of a growing boundary layer. The thickness 6 of the boundary layer on 
the aerofoil grows initially in a starting flow proportionally to (vt);, where v is the 
kinematic viscosity. However, the scale of the shed vortex, for example, for an 
impulsive start, is given by 

so N ( U o o t ) ‘ / ( 2 K - 1 ) C ( K - - 1 ) / ( 2 C - - 1 ) .  
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Hence the scale of the vortex will overtake that of the boundary-layer thickness in 
a time 

t ,  - U-,l c Rk-'', 

where Re is the chord Reynolds number. For small or moderate trailing-edge angles 
( K  w 2 )  and practical Reynolds numbers this is a very small time, much smaller than 
those considered in the above inviscid analysis. 

On the other hand, effects of compressibility, which should be expected to retard 
the initial growth of circulation, are significant over times smaller than 

t, - U- , l l e ,  

where a ,  is the speed of sound in the fluid. Thus compressibility effects are likely 
to be significant unless the Mach number is very small (< 10-l). 

3. Conclusions 
It has been shown that the initial development of the lift on an aerofoil in inviscid 

incompressible starting or suddenly changed motion depends strongly on the rate a t  
which the effective incidence changes compared with the rate of change, if any, of 
streamwise velocity, as well as the trailing-edge angle. I n  the case of starting flows, 
the shed vortex sheet rolls up initially above the trailing edge, and planar-sheet models 
are not appropriate for small times. I n  particular, impulsively started aerofoils with 
trailing-edge angles less than are subject to an initial singularity in the lift followed 
by decreasing lift before the usually assumed monotonically increasing lift curve is 
reached. 
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